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In the study of some questions in aeroelasticity it is necessary to determine the vir- 
tual masses and coefficients of aerodynamic damping for bodies undergoing small oscillations. 
In regions of arrays, simulating the blades of working wheels and directing apparatus of 
turbomachines, this problem has been studied only for oscillations of arrays in an incom- 
pressible liquid. In [I] the virtual masses of a straight array of plates were determined, 
and in [2] the virtual masses of a ring-shaped array of blades, used for modeling the steps 
of axial machines, were determined. In these works, in particular, the effect of the inter- 
action between blades undergoing small harmonic oscillation with a constant phase shift on 
the coefficients of virtual masses was studied. 

In a compressible liquid such problems have been studied only for separate bodies. How- 
ever, in studying the oscillations of arrays in a gas, aside from the question of the in- 
teraction of the blades, it is of special interest to investigate regimes near resonance, 
which arise when the real part of the characteristic frequency of the oscillations of the 
gas near the array equals the frequency of oscillations of the blades. 

In this work the virtual masses and coefficients of damping for an immobile circular 
array of thin profiles undergoing small harmonic oscillations with a constant phase shift in 
an ideal compressible liquid are determined. Such arrays are usually used to model blade 
diffusers and directing apparatus of centrifugal turbomachines. The calculations performed 
showed that in regimes near resonance two types of phenomena are observed: resonance with 
a sharp increase in the amplitude of the complex coefficients of the forces acting on the 
profiles in the array and resonance absorption, in which the amplitude of these coefficients 
decreases while the phase changes sign. 

i. We shall study the problem of the propagation of small disturbances, emitted by an 
immobile circular array, whose profiles undergo small oscillations according to the same 
harmonic law with a constant phase shift H = 2~m/N (m = 0,I ..... N - i; N the number of 
profiles in the array), in an ideal gas. We shall assume that the profiles are infinitely 
thin, weakly curved arcs. We denote by R i and R 2 the inner and outer radii of the array 
(Fig. i). We introduce the dimensionless polar coordinates p/R 1 and 8, placing the origin 
of the coordinate system at the center of the array. 
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Under these assumptions the oscillations of the n-th profile of the array can be de- 
scribed in the form 

w(~)(s) = RJ(s)  exp [i(n~ - -  ~t)l, 

where w(n) i s  t h e  d i s p l a c e m e n t  of  t h e  p o i n t  o f  t h e  n - t h  p r o f i l e  a long  t h e  normal ;  ~ i s  t h e  
c i r c u l a r  f r e q u e n c y  of  t h e  o s c i l l a t i o n s ;  f ( s )  i s  a d i m e n s i o n l e s s  complex f u n c t i o n  d e t e r m i n i n g  
t h e  form of  t h e  o s c i l l a t i o n s  and,  s i s  t h e  c o o r d i n a t e  o f  p o i n t s  a l o n g  t h e  a r c  o f  t h e  p r o f i l e ,  
measured  from t h e  i n n e r  edge of  t h e  f i x e d  c e n t r a l  p o s i t i o n  o f  t h e  p r o f i l e  L n.  

Assuming t h a t  t h e  p e r t u r b e d  mot ion  of  t h e  gas i s  s t e a d y  we s h a l l  seek  t h e  v e l o c i t y  po- 
t e n t i a l  in  t h e  form ~P(p, O, t ) =  iR~o)fp(p, O)Xexp (--i(ot). In  t h e  l i n e a r  a p p r o x i m a t i o n  t h e  dimen- 
s i o n l e s s  complex f u n c t i o n  ~ ( 9 ,  e ) ,  d e t e r m i n i n g  t h e  a m p l i t u d e  o f  t h e  s t e a d y  s t a t e  o s c i l l a t i o n s  
o f  t h e  g a s ,  s a t i s f i e s  t h e  homogeneous He lmho l t z  e q u a t i o n  in  t h e  e n t i r e  p l a n e  o u t s i d e  t h e  

N - - 1  

p r o f i l e s  o f  t h e  a r r a y  L = U Ln 
n = 8  

Acp -}- kS~ ---- 0 (i.i) 

(k = ~R1/a~ i s  t h e  wave number and a~ i s  t h e  v e l o c i t y  o f  sound in  t h e  u n d i s t u r b e d  gas ,  w i t h  
the following conditions: 

the profiles of the array are impermeable 

0~ I 
0v L~=  -- / (S)  e~'t~' n = 0, 1 . . . . .  N - -  i ( 1 . 2 )  

(v is the normal to the profile); 
the radiaton condition, which we write in one of the equivalent forms: 

q~ (p, O) f~ ~ t )  e~O = a~a~ (kp) for p > B 2 ( 1 . 3 )  
8 ~ - - o o  

(H (x )  i s  t h e  Hankel  f u n c t i o n  o f  t h e  f i r s t  k i n d ) ;  
g e n e r a l i z e d  p e r i o d i c i t y  

~(p, 0 + a) = ~(p, O) exp (i~) 

(~ = 2~/N is the spacing of the array along 0); and, 
the circulation of the velocity vector around each profile of the array vanishes: 

(1.4) 

r (n) = o, n = 0, i ..... N--I (1.5) 

(F (n) is the circulation of the velocity around the n-th profile). 

2. We shall derive the integral equation that is equivalent to the boundary-value prob- 
lem (1.1)-(1.5). With the help of the second Grlen's formula, using (1.3), we write the in- 
tegral representation of the solution of Eq. (i.i) at any point in the plane, excluding some 
neighborhood ~ of the profiles of the array L: 

CP (x) = !~( g (y' x) ~ (y) 0v. 
. . Og (y, x) 

uvy ) ( 2 . i )  

where ~ is the normal to 8~ at the point y; g(y, x) = H~~ the fundamenetal solu- 
tion of YEq. (i.i). After differentiating (2.i) we obtain an integral representation for the 
amplitude of the velocity of small disturbances v, which with the help of the relations from 
([3] and (i.i) can be transformed as follows: 

v =--- V ~ p  = -- S [(v~ X v)X Y~g -~ (vy. v) V ~g + k2g~pv~] d S y .  
0 2  

( 2 . 2 )  

On transferring from 8~ to infinitely thin profiles of the array L the form of (2.2) remains 
the same, if the integration is performed on one side of the profile and ~ and v are replaced 
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by the values of their jumps on crossing L: P = ~---~+, ? = ~---v+)'~, 6 = ~---v+)-v (T is 
the unit tangent vector to L). Since the integrand in the representation (2.2) does not con- 
tain second derivatives of g, in accordance with [4] we find the integrodifferential equation 
for the unknown functions ~(s) and P(s): 

! {?[(v:~.'~u)o--~u--(v:~.vu)o~u] + rk2g(v~:.vu))dSu= f(x), x ~  L, (2 .3)  

where the right side is 

The functions sought are also related by the relations 

0r  (y)/0~: u = '7 (Y), Y ~ L, J" ? (Y) d S ~  = O, ] = O, t . . . . .  N - -  t ,  
Lj (2 .4)  

which follow from the definition of these functions and the condition (1.5). 

We note that Eqs. (2.3) and (2.4) and the method of solution described below are valid 
for the general case, when the Neumann boundary-value problem for an arbitrary collection of 
a finite number of smooth bounded arcs is studied. In this case, by virtue of the condi- 
tions (1.2) and (1.4), Eq. (2.3) can be rewritten in the form 

i {~ ,  (y) Ko (y, x) + r (y) K~ (y, x)} dS~ = / (x), ~ 5 L o . X ( 2. ) 
0 

gN (y, x) og~ (y, x) 
Here K 0 (y, x) ---- (T u.v~) 0v u (vy.v~) o~y ; KI (y, x) = k2g~ (Y, x) X (vx'vu); Sy is the arc coordinate 

N--t 

on L0; x,y~ L0; g~(y,x)= ~ eiJ"H (*) (kID--x[),Yj~ Li is the elementry solution of Eq. (i.I) for 
j=0 

a circular array of poins singularities with the coordinates yj = (p,0 ~-]=). 

3. We shall determine the forces acting on the zeroth profile of the array, whose 
oscillations are described by 

N o 

w(p, 0, t)= ~ q.(t)l,~(p, 0), (3.1) 
I 'n=i 

where qm(t) are generalized coordinates with the dimension of length; fm(P, 0) are the forms 
of the oscillations; and, N o is the number of generalized coordinates. 

We shall study, for a fixed form of the oscillations, the generalized hydrodynamic force 

Q, (t) = .[ Ap (p, o, t)/,~ (p, o) ,~s,,,: ( 3 . 2 )  
L o 

in which the pressure drop on the profile Ap is calculated in the linear approximation with 
the help of the Cauchy-Lagrange integral 

Ap (p, O, t) = - -  9o ~ - - t a . t J  j" (3 .3)  

We introduce the complex coefficients 

Gmn = ~tmn -~- -~ ~m~ = -- R19o rra/n dS u 
L 

(3.4) 

(Pm(s) is the solution of Eqs. (2.4) and (2.5) with right side f~x) = fm(P, 0)). For har- 
monic oscillations, described by (3.1), by virtue of the linearity of the problem we rewrite, 
based on (3.3) and (3.4), the relation (3.2) in the form 

N o N o 

m ~ l  m = l  
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Here the coefficients ~mncharacterize the inertial forces, which have the dimension of mass 
and are called the coefficients of the virtual msses; imn are the damping coefficients; and, 
qm and qm are the generalized velocities and accelerations. 

Therefore the problem of determining the aerodynamic forces acting on a profile in the 
array has been reduced to calculating the complex coefficients Gmn, which can be expressed 
in terms of the solution of Eqs. (2.4) and (2.5). 

4. The singular introdifferential equation (2.4) has the feature that its kernel has 
a first-order pole plus a term with a logarithmic singularity. We note that direct numer- 
ical methods for solving equations of this type not currently widely employed [5]. It 
was proposed previously [6] that the method of discrete singularities, which is the simplest 
method among the direct methods employed for solving singular integral equations with a 
kernel of the Cauchy type, be employed for numerical investigation of an analogous homogene- 
ous equation. The complex characteristic frequencies of oscillations of the gas, calculated 
in [6], outside some thin bodies were virtually identical to the frequencies obtained for 
these regions by the method of splicing. The application of this method to the solution of 
inhomogeneous equations (2.4) and (2.5), however, made it necessary to improve this method. 

In constructing the solution by the method of discrete singularities the test problem 
for calculating the virtual masses of a thin plate of length 2a, undergoing translational 
oscillations, an unsymmetric distribution of the jump in the amplitude of the potential F(s) 
along the plate was obtained (Fig. 2a, broken line, the plate was divided into 20 elementary 
sections, k = 4.0). It was established that for a fixed number of discrete singularities 
on the plate, as k increases the asymmetry of the numerical solution increases and affects 
slightly the values of the overall characteristics. The coefficients of virtual masses 
~2~ = ~2~/Poma~ and aerodynamic damping ~22 = %22/~p0~a~ (Fig. 2b, broken lines) agree well with 
the results obtained with the help of Haskind's method [7] (solid lines). The asymmetry of 
the characteristics distributed along the plates is a consequence of the asymmetry of the 
matrix of the system of algebraic equations with this type of discretization of Eq. (2.5) 
owing to the presence of a term with a logarithmic singularity in the kernel of the equation. 
We note that when the number of discrete singularities increases the asymmetry of the matrix 
and of the solution decreases. 

To avoid this error in the calculations, we shall study a modification of the method of 
discrete singularities. To this end we divide the profile L 0 uniformly into 2M noninter- 
secting elementary sections s so that L 0 = U2~1s We denote by x m the points lying be- 

tween the intervals ~2m and s . (m = O, .... M, s and s = @) and by Ym the points be- 
2mtl . 

tween s and s (m = i, ..., M). We introduce on L 0 the system of characteristic func- 
tions 

{1, if S ~12m--1 U l,m, {l, if s~12~ U 12m+l, 
ltrm(S)= O, if 3~12m_1 U 12m, r = O, if 8~12m U 12m+l, 
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with whose help we shall write the approximate solutions ~(s) and F(s) of Eqs. 
(2.5) as linear combinations 

M M 

~l ~ 0  

(2.4) and 

(4.1) 

(~m and ~m are the approximate values of the functions sought at the points of interpolation 
Ym and Xm, respectively). We introduce the intensity of the jumps in the tangential com- 

~ ] - 
component of the velocity vector on intervals of the profile 7m ---- 7(s) ds~TmA~ 

12m U lgm--1 

(~m d e t e r m i n e s  t h e  l e n g t h  o f  t h e  s e c t i o n  ~2m U i 2 m - i ) .  Then i t  f o l l o w s  from ( 4 . 1 )  and ( 2 . 4 )  
that the following relations hold: 

~n = 2 7m, F o = F M = O ,  n - - I  . . . . .  M - - i .  ( 4 . 2 )  
m = l  

To obtain the discrete analog of Eq. (2.5) we shall approximate the integral operator 
I0, whose kernel contains a pole, by analogy to the method of discrete singularities. To 
this end we place at the points Ym the point singularities of the function K 0 with inten- 

M 

sities Ym, i.e., 10(x) = ~ ~mKo(Ym, X ). We shall approximate the second integral operator 
~=I 

I i with the kernel having a logarithmic singularity in accordance with the general scheme of 
the method of self-regularization [8]. Substituting the approximation (4.1) for the solu- 
tion F(s) into the integral operator I i we obtain 

M 

11 (x) = ~ F~ .[ K 1 (y, x) dSu. 
m = l  12mUl2m~ 1 

Now c hoos i ng  t h e  p o i n t s  x n f o r  t h e  p o i n t s  o f  c o l o c a t i o n  we a r r i v e  a t  a sys t em of  l i n e a r  a l -  
g e b r a i c  e q u a t i o n s  a p p r o x i m a t i n g  Eq. ( 2 . 5 ) ,  

Y, ?mKo (Ym, xu) + F m  K 1 (y, xn) dSy = ] (xn), ( 4 . 3 )  
~ i  12mU 12m~ 1 

the unknown coefficients of which 7m and ~m are related with one another by the additional 
relations (4.2), n = 1 .... , M - i. For this choice of points of colocation the principal 

diagonal of the matrix [IAmnlJ with the elements Amn = f Kj (y,xn)dS u is predominant, and 
12mO 12m+l 

for a uniformly divided thin plate it is symmetric. This is achieved owing to the fact that 
the colocation points are also the interpolation points in the approximation of the inte- 
gral operator I i of Eq. (2.5), whose kernel contains a logarithmic singularity. 

The algorithm for calculating the matrix elements Amn is not related directly with the 
approximation of the solution sought. Any standard numerical integration algorithms can be 
used to calculate the matrix elements. Taking into account the degree of accuracy of the 
approximation of the first integral operator, however, in order not to complicate the al- 
gorithm for solving Eq. (2.5), we shall confine our attention to the approximation 

Am~ = Ki(xm, x~)Am for m :#: n ( 4 . 4 )  

TABLE 1 

M Re O~2 I m  G~2 M Re G~ I m  G~ 

50 
20 
30 

i,0860 
t,5348 
id506 

I 
0,55409 40 ] 1,t584 
0,62124 50 t t,1629 
0,64494 1 

0,65705 
0,66439 
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(A m is the length of the section s U s i). The diagonal matrix elements Ann contain a 
logarithmic singularity, which in determining the matrix elements was separated in the form of 
the term 

12n U 12n~- i 12n U I2n-~- I 12n U /2n-~-1 

where the first integral is calculated explicitly and the approximation (4.4) ws used for the 
second integral. To further simplify the computational scheme we shall write the system 
(4.3), based on (4.2), for the unknowns Fm: 

M--I 

F~ (Ko (y,~, xn) --  Ko (Y~+I, xn) -{- Am~) ---- / (x~). ( 4 . 5 )  
m = l  

The system (4.5) can be regarded as the discrete analog of Eqs. (2.4) and (2.5). We note 
that the algorithm for calculating the matrix elements using the proposed scheme, unlike the 
method of discrete singularities, is more complicated only whenthe diagonal elements Ann 
are found. However in the case when this method of discretization is employed, the asymmetry 
in the calculation of the characteristics distributed along the plate is eliminated (Fig. 2a, 
solid line), and the method is identical to Haskind's method for integral characteristics 
also (Fig. 2b, broken line). 

Numerical studies of the rate of convergence of the proposed computational scheme were 
performed. The results of a comparison are given in Table i; analysis of the results shows 
that the modified scheme is more efficient. 

5. In determining the nonstationary aerodynamic forces acting on the vibrating blades 
of a circular array in a compressible liquid it is of special interest to study the behavior 
of the forces in the near-resonance regimes. To this end calculations of the virtual masses 
and damping coefficients were performed for a circular array consisting of twenty radial 
plates with R I = 1.0 and R 2 = 1.5 for values of k close to the values of the real part k~ 
and k~, which are the first characteristic frequencies of oscillations of the gas near the 
array with phase shifts between the oscillations of neighboring plates in the array DI = ~ 
and D2 = 0, respectively [6]. It was established, based on the calculations, that for oscilla- 
tions of the profiles at a frequency close to the frequency of the characteristic oscilla- 
tions, resonance phenomena of two types arise. In the first case, when the characteristic 
oscillations of the gas are localized in the regions of the channels between the blades 
(DI = 4) resonance is observed with a sharp increase in the amplitude of the coefficients 
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G22 of the aerodynamic forces (Fig. 3a). For comparison Figs. 3 and 4a show (broken l ine)  
the values of the amplitude of the coefficients G22 for a single plate. We note that on 
passing through the resonance frequency the phase 8 o between the oscillations of the plate 
and the force acting on it changes from 0 to ~ (Fig. 3b). These results correspond to the 
results obtained in the study of the behavior of the coefficients of aerodynamic forces in 
near-resonance regimes of straight arrays of thin plates in a flow [9]. 

For the phase shift ~2 -- 0 the characteristic oscillations are localized in the interior 
region of the array (p < RI). In this case resonance absorption, with which the amplitude 
of the coefficients G22 decreases (Fig. 4a) while the phase e 0 changes sign (Fig. 4b), is 
observed. The question of the existence of absorption resonances was not previously studied 
in the theory of arrays. In the one-dimensional theory of resonators attached to transmis- 
sion lines, however, resonance phenomena of both types, analysis of which permits establish- 
ing the relation between them, are encountered [i0]. Indeed for ~i = ~ the interblade chan- 
nels can be interpreted as pass-through resonators, connecting the space in front and behind 
the array. In wave transmission lines the existence of pass-through resonators leads to a 
sharp increase in the amplitude of oscillations at the resonant frequency. For circular 
arrays with ~2 = 0 the interblade channels can be interpreted as wave guides to which a re- 
sonator, determined by the internal rgion of the array, is attached. When the wave guide 
is determined by a resonator, however, as is well known [i0], resonance absorption charac- 
terized by the same properties as resonance absorption in a circular array is observed in the 
transmission line. 
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